24‏/05‏/2015

الحدَث التربَـوي المَغربي: إسناد منصب حارس عام و رئيس الأشغال

24‏/10‏/2010

الطُّبولوجْيَا

الطُّبولوجْيَا
اعترف العلماء بالطُّبولوجْيَا فرعاً مستقلاً من العلوم الرياضية في العقد الثاني من القرن العشرين، لكن نموها الواسع بدأ في العقد الرابع منه. وهي من أهم الفروع الرياضية الجديدة نسبياًَ، وقد أحدثت آثاراً بعيدة المدى في معظم هذه الموضوعات. ومع أن استحداثها كان استجابة لحاجات التحليل الرياضي، فلايمكن عدّها فرعاً منه. ويمكن القول إنها نوع من الهندسة، لكنها ليست نمطاً متقدماً منها مثل الهندسة الإسقاطية أو التفاضلية، بل إن ثمة ما يسوّغ وصفَ الطبولوجيا بأنها الهندسة الأساسية fundamental geometry.
وتوجد بداياتٌ للطبولوجيا في الستينيات من القرن التاسع عشر في ثنايا بحوث ڤيرشتراس Weierstrass، التي كان يحلل فيها مفهومَ نهايةِ دالةٍ.
وبعد تطوير كانتور Cantor الجريء لنظرية المجموعات (1874ـ1895)، وُجِدَ الأساسُ المكينُ الذي بنى عليه هاوسدورف (1900ـ1910) Hausdorff  الطبولوجيا العامة. بعد ذلك، استُحدثت فروع جديدة للطبولوجيا، تأتي في مقدمتها الطبولوجيا الجبرية، والطبولوجيا التفاضلية.
وتجدر الإشارة هنا إلى أن تطبيقات الطبولوجيا اقتحمت علوماً أخرى غير الرياضيات، لكن هذا الدخول يجري عبر الموضوعات الرياضية التي تستعملها تلك العلوم. وعلى سبيل المثال، فإن التغييرات، التي أحدثتها الطبولوجيا في الهندسة التفاضلية، أطلقت العنان للعاملين في نظرية النسبية ليُضْفُوا نكهة طبولوجية على تفكيرهم. ويمكن القول اليوم إن الطبولوجيا لم تصبح أحد الأركان الأساسية لعلم الرياضيات فحسب، بل غدت ضرورةً للكثير من العلوم الأخرى.
قد يصعب على الطبولوجِّي إعطاء تعريف مباشر وسهل ومحدد للطبولوجيا، ولعل ما يمكنه قوله هو أن الطبولوجيا فرع من علم الرياضيات يبحث في المسائل النوعية (الكيفية) qualitative للبنى الهندسية، وأن تطبيقاته تتعدى علم الهندسة إلى كثير من فروع الرياضيات المتقدمة وإلى بعض العلوم الأخرى. بيد أن مثل هذه الإجابة قد تبدو غامضة، وعندئذٍ يمكن للطبولوجيّ أن يُحضرَ ورقة ومقصاً ومادة لاصقة، ويشكلَ شريطاً يسمى شريط موبيوس Möbius band (سيذكر لاحقاً)، ويقصه على طول خطه المركزي ليصل إلى نتيجةٍ تدهش المتفرج بل يستطيع الطبولوجيّ نزع قميصه الداخلي دون أن يخلع معطفه. هاتان لعبتان معروفتان، لكن كلاًَّ منهما يستند إلى فكرةٍ رياضيةٍ بارعةٍ قد يتطلب شرحها عدة ساعات. بيد أن تقديم مثل هاتين اللعبتين لتعريف الطبولوجيا دون شرحٍ مناسبٍ ليس إلاّ تمثيلاً هزلياً لها.
مفهوم الطبولوجيا
الشكل (1)

الشكل (2)
تُعرّف الطبولوجيا أحياناً بأنها «هندسةٌ على سطوحٍ مطاطية». ومع أن هذا وصف ضبابي وغير مفهوم جيداً، فإنه مفيد لفهم كنه هذا الموضوع. فالطبولوجيا تبحث في خاصيات الأشكال الهندسية التي لا تـتغير عندما تطبّق عليها التحويلات (أي التوابع، أو الدوال) المستمرة. وتـتجلى السمة المميزة للتحويلات المستمرة في أن النقاط «القريبة إحداها من الأخرى»، continuous transformations (functions) قبل إخضاعها لهذه التحويلات، تظل كذلك بعد انتقالها إلى مواضعها الجديدة نتيجة تطبيق تلك التحويلات. في هذه التحويلات يُسمح بالمطّ والتقليص والثني، لكنْ دون قص الأجزاء المختلفة أو تمزيقها أولصقها معًا. وتسمى الخاصيات التي لاتـتغير بعد تطبيق التحويلات المستمرة عليها خاصياتٍ طبولوجيةً topological properties.، لكنْ أيُّ نوع من الخاصيات يمكن وصفها بأنها طبولوجية؟ من الواضح أنها ليست تلك التي تُدرس في الهندسة الإقليدية المألوفة. فالاستقامة، مثلاً، ليست خاصّة طبولوجية، لأن الخط المستقيم يمكن ثنيه ليصبح متعرجاً. وكون الشكل مثلثياً ليس خاصة طبولوجية أيضًا، لأنه يمكن إخضاع المثلث لمطٍّ وثنيٍ مستمرين ليتحول إلى دائرة (الشكل 1)، والكروية ليست خاصية طبولوجية، لأنه يمكن تحويل الكرة بعد إخضاعها للتحويلات السابقة إلى مكعب! وبهذا المعنى فإن أطوال القطع المستقيمة، ومقادير الزوايا والمساحات هي جميعًا مفاهيم يمكن تغييرها بالتحويلات المستمرة، ومن ثم فهي خاصيات غير طبولوجية.
وكمثال على الخاصية الطبولوجيه، وجود فتحة في طارة لاتكوّن جزءاً منها. فمهما كان نمط التحويلات المستمرة التي يخضع سطح الطارة لها، تظل الفتحة موجودة فيها. ومن هذه الخاصيات وجود حافة لسطح، فلايمكن لأي تحويل مستمر أن يغير وجود تلك الحافة.
وهكذا فإن تنوع الأشياء التي يدرسها الطبولوجيّ أقل من تنوع الأشياء التي تـتناولها الفروع الرياضية الأخرى، فلا فرق عنده بين الدائرة والمثلث، وبين الكرة ومتوازي المستطيلات، وبين القطعة المستقيمة وأي منحن ناتج منها بالمط والثني.
التكافؤ الطبولوجي
تسمى الأشياء الأساسية التي تدرسها الطبولوجيا فضاءاتٍ طبولوجيةً topological spaces، وهي أشياء رياضية يمكن تصورها حدسياً بأنها أشكال هندسية. هذه الفضاءات هي مجموعات (تكون أحياناً مجموعات جزئية من فضاء إقليدي) مزوّدة ببنية ـ تسمى طبولوجْيَا ـ تسمح بصوغ مفهوم الاستمرار. فسطح الكرة، أو الطارةِ torus، أو الطارةِ المضاعفه (ذات الفتحتين) تقدم أمثلة على فضاءات طبولوجية (الشكل 2).
الشكل (3)
يقال عن فضائين طبولوجيين إنهما متكافئان طبولوجيًَّا إذا أمكن الانتقال من أحدهما إلى الآخر بطريقة مستمرة، ثم العودة إلى الوضع الأصلي بطريقة مستمرة أيضاً. وغالباً ما يقال إن الطبولوجيّ لايفرق بين الكعكة وفنجان القهوة، اللذين يقدمان مثالاً على شيئين متكافئين طبولوجيّاً (الشكل 3).
الشكل (4)

الشكل (5)
ثمة مفهوم للتكافؤ.في كل من الهندسات التقليدية، ففي الهندسة الإقليدية يكون شكلان متكافئين إذا كانا طبوقين congruent، أي إذا وجدت حركة صلبة تطبق أحدهما على الآخر. وفي الهندسة الإسقاطية، يتكافأ شكلان إذا وجد تحويل إسقاطي projectivity ينقل أحدهما إلى الآخر. وتتضمن التحويلاتُ الإسقاطية تحويلاتِ الطبوقيةِ وتحويلات التشابه، وتحويلاتٍ إضافية أخرى تجعل أي مثلث يكافئ أي مثلث آخر، وتجعل أيَ دائرةٍ مكافئةً لأي قطع ناقص.
وبلغة نظرية المجموعات، يقال عن فضاءين طبولوجيين س، ع إنهما متكافئان طبولوجيًَّا إذا وجدت دالةfunction د: س ¬  ع تحقق الشروط الآتية:
أ) د متباينة وغامرة
ب) د مستمرة
ت) د الدالة العكسية
 د-1 : ع  ¬  س مستمرة أيضًا.
لننظر في المثال التالي: لنأخذ قطعتي معجون ولندمجهما معاً. إن هذا التحويل من قطعتين إلى قطعة واحدة مستمر، لأن النقاط التي كانت قريبة بعضها من بعض في القطعتين، تبقى كذلك (الشكل 4) بعد الاندماج. لكنْ عند إجراء التحويل العكسي تنقسم القطعة إلى قسمين (الشكل 5)، ومن ثم تصبح النقاطُ، التي كانت قريبة بعضها من بعض على طرفي الخط الفاصل، بعيدةً بعضها عن بعض، وهذا يعني أن التحويل العكسي ليس مستمراً. لذا فإن الفضاء الطبولوجي س المكوّن من القطعتين المنفصلتين غير مكافئ طبولوجيّا للفضاء ع المكوّن من قطعة متصلة واحدة.
ويوضح الشكل (6) سبعة فضاءات طبولوجية يمكن تقسيمها إلى مجموعتين، كل منها مكوّن من فضاءات متكافئة طبولوجياً. تحوي الأولى الأشكال (ب، جـ، هـ) والثانية الأشكال (أ، د، ذ).
فضاء طبولوجي غير مالوف
ليست جميع الفضاءات الطبولوجية ببساطة الكرة أو الطارة، إذ إن ثمة فضاءات أكثر تعقيداً وإثارة، منها شريط موبيوس، الذي ورد ذكره آنفاً. والذي يمكن عمله من شريط ورقي طويل بأن تُلصق حافتاه بعد تدوير إحداها180 ْ (الشكل7).
الشكل (6)
الشكل (7)
شريط موبيوس سطح وحيد الجانب one-sided، في حين أن الشريط الأسطواني ـ الذي ينجم من شريط ورقي بلصق حافتيه دون تدويرهما ـ ثنائي الجانب two-sided. الفرق بين هذين السطحين، هو أن حشرة ما موجودة على شريط موبيوس تستطيع بلوغ أي نقطة منه دون أن تتجاوز حدود الشريط، في حين أن حشرة موجودة على الشريط الأسطواني لايمكنها الانتقال من جانب إلى آخر منه دون تجاوز حدوده. ولما كان ثمة مبرهنة تبين أن عدد الجوانب خاصية طبولوجية، فإن شريط موبيوس والشريط الأسطواني ليسا متكافئين طبولوجياً.
المصدر :الموسوعة العربية

المنطق الضبابي

المنطق الضبابي هو توسيع وامتداد لمفهوم المنطق الكلاسيكي.

تعريف وبدايات المنطق الضبابي

نطق الغموض هو أحد أشكال المنطق، يستخدم في بعض الأنظمة الخبيرة وتطبيقات الذكاء الاصطناعي، نشأ هذا المنطق عام 1965 على يد العالم الاذربيجاني الأصل "لطفي زادة" من جامعة كاليفورنيا حيث طوّره ليستخدمه كطريقة أفضل لمعالجة البيانات، لكن نظريته لم تلق اهتماماً حتى عام 1974 حيث استخدم منطق الغموض في تنظيم محرك بخاري، ثم تطورت تطبيقاته حتى وصلت لتصنيع شريحة منطق ضبابى fuzzy logic chip والتي استعملت في العديد من المنتجات كآلات التصوير.
هناك العديد من الدوافع التي دفعت العلماء إلى تطوير علم المنطق الضبابي فمع تطور الحاسوب والبرمجيات نشأت الرغبة في اختراع أو برمجة أنظمة يمكنها التعامل مع المعلومات الغير الدقيقة على غرار الإنسان لكن هذا ولد مشكلة حيث أن الحاسوب لا يمكنه التعامل إلا مع معطيات دقيقة ومحددة. وقد نتج عن هذا التوجه ما يعرف بالأنظمة الخبيرة أو الذكاء الإصطناعي ويعتبر علم المنطق الضبابي أحد النظريات التي يمكن من خلالها بناء مثل هذه الأنظمة.

المفهوم العام لمنطق الضبابي fuzzy logic

نطق الضباب بالمعنى الواسع هو منظومة منطقية تقوم على تعميم للمنطق التقليدي ثنائي القيم، وذلك للاستدلال في ظروف غير مؤكدة. وبالمعنى الضيق فهو نظريات وتقنيات تستخدم المجموعات الضبابية التي هي مجموعات بلا حدود قاطعة. يمثل هذا المنطق طريقة سهلة لتوصيف وتمثيل الخبرة البشرية، كما أنه يقدم الحلول العملية للمشاكل الواقعية، وهي حلول بتكلفة فعالة ومعقولة، بالمقارنة مع الحلول الأخرى التي تقدم التقنيات الأخرى.

المفاهيم والمفردات الأساسية في علم المنطق الضبابي

المجموعة التقليدية والمجموعة الضبابية

المجموعة التقليدية

في المجموعة الكلاسيكية أو التقليدية يمكن لعنصر ما إما أن ينتمي للمجموعة وإما أنه لا ينتمي لها بتاتا. فلنعتبر مثلا المجموعة A ومجموعة U. إذا قمنا بتعريف الدالة μA التي تعطي لكل عنصر من عناصر المجموعة U درجة انتمائه إلى المجموعة A ،و ذلك عبر إعطائها الرقم 1 في صورة انتماء العنصر للمجموعة أي μA(x) = 1 إذا كان عنصر المجموعة U أي العنصر x ينتمي للمجموعة A. أما إذا كان العنصر x لا ينتمي لـ A فإن الدالة μA تعطيه الرقم 0 أي μA(x) = 0 وعلى ذلك فإنه يمكن التعبير عالي الدالة μA كالآتي:
\mu_{A}: U \rightarrow \left\{0, 1\right\}



x \mapsto \mu_{A}(x)

المجموعة الضبابية

في المجموعة الضبابية يمكن لعنصر ما أن يكون منتمي إلى حد معين للمجموعة. لنأخذ مثالا: لنعتبر المجموعة A مجموعة درجات الحرارة التي تصنف كباردة(باردة بالنسبة للإنسان) ولنعتبر المجموعة U هي كل درجات الحرارة التي يمكن أن توجد في الكون مثلا ولنأخذ من المجموعة U العنصر x=-100 هذه درجة حرارة باردة جدا ولذلك فهي تنتمي تماما للمجموعة A أي μA(x) = 1 أما إذا أخذنا درجة x=+500 فإن هذه الدرجة من الحرارة حارة جدا ولذلك العنصر x لا ينتمي أبدا إلى A. إلى الآن لم نخرج عن استعمالات المنطق الكلاسيكي أو التقليدي كما هو مبين أعلاه ولكن لنأخذ الآن درجة الحرارة 12 درجة أي x=12. في المنطق التقليدي ليس لدينا إلا إحتمالين إما أن x ينتمي أو أنه لا ينتمي ل A. في المنطق الضبابي يمكن أن نقول أن x ينتمي مثلا إلى درجة 50% إلى A أي أن درجة حرارة 12 درجة هي نصف باردة نصف معتدلة مثلا أي μA(x) = 0.5 وهنا نرى الاختلاف في تعريف الدالة μA حيث تعرف رياضيا كالآتي:
\mu_{A}: U \rightarrow \left[0\ 1\right]
x \mapsto \mu_{A}(x)
حيث يمكن للدالة أن تعطي نتائج بين 0 و 1 على عكس الأمر في المنطق الكلاسيكي حيث لا تعطي الدالة إلا رقم 1 أو رقم صفر

العمليات على المجموعات الضبابية

هناك العديد من العمليات التي يمكن إجرائها على المجموعات الكلاسيكية منها:
  • التقاطع ويرمز للعملية ب \bigcap أو \wedge
  • الدمج ويرمز للعملية ب \bigcup أو \vee
  • العكس ويرمز للعملية ب \neg A أو \overline{A}

في المجموعات الضبابية أو المنطق الضبابي يمكن استعمال هذه العمليات أيضا ولكن دعنا ندرس كيفية القيام بهذه العمليات في المنطق الكلاسيكي ونقارنها بالعملية في المنطق الضبابي.
العكس
لنأخذ مثلا عملية العكس أي \neg A أو \overline{A} حيث A هي مجموعة الدرجات المعتدلة و B هي \neg A أي درجات الحرارة الغير معتدلة فماهي العلاقة بين دالة الانتماء μA وμB العلاقة موضحة في الصورة أسفله
حيث في المنطق الكلاسيكي يجب مثلا على درجة حراة معتدلة أن تنتمي كليا لـ A وفي نفس الوقت لا تنتمي بتاتا ل B أي مثلا درجة الحرارة المعتدلة 20 يجب أن تكون تخضع للعلاقة μA(20) = 1 وفي نفس الوقت μB(20) = 0 وهذا تجسيد للمنطق الكلاسيكي حيث درجة الحراة 20 إما أن تحسب على المجموعة المعتدلة أو الغير معتدلة وليس من الممكن أن تكون 20 درجة في نفس الوقت معتدلة وغير معتدلة. هذا يمكن تحقيقه إذا كانت دالة الانتماء μB = 1 − μA وتكون كما هي مبيتة في الرسم أعلاه. يجدر الإشارة إلى أن هذه ليست إلا إمكانية تحقيق فكرة العكس في المنطق ويمكن طبعا استعمال عمليات أخرى عوض عملية الطرح إذا كانت تؤدي نفس المعنى إلا أن استعمال عملية الطرح للقيام بالعكس هي الأكثر شيوعا ويمكن استعمال عملية الطرح في المنطق الضبابي أيضا.
التقاطع
يمكن تعريف عملية التقاطع في المنطق الضبابي وفي المنطق الكلاسيكي على حد السواء كما هو الحال لعملية العكس أي باستعمال عمليات رياضية على دالات الانتماء μ ولكن في التقاطع عوض استعمال عملية الطرح عادة ما تستعمل عملية min
الدمج
يمكن تعريف عملية الدمج في المنطق الضبابي وفي المنطق الكلاسيكي على حد السواء كما هو الحال لعملية العكس أي باستعمال عمليات رياضية على دالات الانتماء μ ولكن في الدمج عوض استعمال عملية الطرح عادة ما تستعمل عملية max

تطبيقات

الذكاء الإصطناعي

يستخدم المنطق الضبابى في تصميم وتحليل بعض الشبكات العصبية الإصطناعية.

تحكم عملياتى

التحكم العملياتى هو في الإنجليزية process control ويتعلق أيضا بالتحكم الآلى automatic control. وتتضمن معظم التطبيفات التحكم في المتغيرات الحركية (الميكانيكية) للآلة بناءا على المدخلات الآتية من المستشعرات البيئية. بعض التطبيقات كما يلى:
  • آلات تصوير الفيديو: استشعار حركة الأشياء التي تقوم الكاميرا بتصويرها وأيضا أي اهتزاز من قبل الكاميرا.
  • السيارات: توفير إمكانية التحكم في السرعة cruise control حيث تقوم دائرة المنطق الضبابى بحساب التسارع والتحكم في أثر حقن المزيد من الوقود أو تشغيل الفرامل.
  • تكييف الهواء: القيام بتخفيض الحرارة تدريجيا حتى الوصول إلى المستوى المراد.
  • غلايات السفن : مراقبة درجة الحرارة والضغط والمحتوى الكميائي للمحافظة على الاستقرار.
  • الغسالات: مراقبة الحِمل نوعية الأنسجة وكمية المنظف لتحقيق الأمثلية optimize the cycle في دورة الغسل.

مبدأ المنطق الضبابي

القاعدة الأساسية: المنطق الضبابي هو أحد أشكال الغموض والذي حير العلماء ولكن ليس من الضروري الآن الشرح الكامل للمنطق الضبابي وإنما نكتفي بتعريفه وتبيين استعمالاته في عام 1995 لطفي زادة اكتشف المنطق الضبابي عندما كان يعمل في جامعة كاليفورنيا حيث لاحظ أن الصح والخطأ لا تكفي من أجل تمثيل كافة الأشكال المنطقية وخاصة المشاكل التي تواجهنا حاليا. فالمنطق الكلاسيكي يعتمد على 0 أو 1 فقط وهذا ما يعتمد عليه الكثير من العلاقات في حين توجد علاقات أخرى يكون فيها الموضع الذي فيها يمكن اعتباره صحيح جزئيا أو خاطئ جزئيا في نفس الوقت. وبشكل عام نقول أن : (n) =1 fѕ عندما n Є S، (n) = 0 fѕ عندما xلا تنتمي إلى S.

و هذا ما هو موضح بالشكل حيث أن تغير صغير في قيمة X تجعلها تتغير من set1 إلى set 2
بينما المنطق الضبابي يصف لنا علاقة التابع بشكل أشمل وأعم من ذلك حيث أن الحالة يمكن أن تكون حالة وسط بين الحالتين المألوفتين كما في العلاقة التالية:

ففي المنطق الضبابي يكون الانتقال بين الوضعين بشكل تدريجي لذلك يمكن في هذه المرحلة أن نعتبر الوضع يأخذ كلا الحالتين معا حيث أن تغير صغير في قيمة الدخل يسبب زيادة في التغير وليس تغيرا تاماً.

المعالجة

إن نظام معالجة المنطق الضبابي يدمج داخل ما يسمى وحدة استنتاج ضبابية FIU (fuzzy inferencing unit) تضم هذه الوحدة ثلاث وحدات أساسية للمعالجة هي: الوحدة الأولى : تضم نظام الإدخال والإخراج. الوحدة الثانية : التزويد من قبل المستخدمين. الوحدة الثالثة: تقوم بمعالجة القاعدة المعطاة.

طريقة المعالجة

يوجد الكثير من التوابع في المنطق الضبابي ونذكر مثالا عليها الشكل التالي:

العمليات على المجموعات الضبابية

هناك العديد من العمليات التي يمكن إجرائها على المجموعات الكلاسيكية منها: • التقاطع ويرمز للعملية ب أو
• الدمج ويرمز للعملية ب أو
• العكس ويرمز للعملية ب

تطبيقات المنطق الضبابي

الذكاء الإصطناعي يستخدم المنطق الضبابى في تصميم وتحليل بعض الشبكات العصبية الإصطناعية.

التحكم العملياتي

التحكم العملياتي هو في الإنجليزية process control ويتعلق أيضا بالتحكم الآلى automatic control. وتتضمن معظم التطبيفات التحكم في المتغيرات الحركية (الميكانيكية) للآلة بناءا على المدخلات الآتية من المستشعرات البيئية. بعض التطبيقات كما يلى: • آلات تصوير الفيديو: استشعار حركة الأشياء التي تقوم الكاميرا بتصويرها وأيضا أي اهتزاز من قبل الكاميرا. • السيارات: توفير إمكانية التحكم في السرعة cruise control حيث تقوم دائرة المنطق الضبابى بحساب التسارع والتحكم في أثر حقن المزيد من الوقود أو تشغيل الفرامل. • تكييف الهواء: القيام بتخفيض الحرارة تدريجيا حتى الوصول إلى المستوى المراد. • غلايات السفن : مراقبة درجة الحرارة والضغط والمحتوى الكميائي للمحافظة على الاستقرار • الغسالات: مراقبة الحِمل نوعية الأنسجة وكمية المنظف لتحقيق الأمثلية optimize the cycle في دورة الغسل.

المصدر : مقالات ويكيبيديا المهتمة بالرياضيات

 




علم المثلثات

علم المثلثات (Trigonometry) هو فرع من الرياضيات يدرس الزوايا والمثلثات والتوابع المثلثية مثل الجيب والجيب تمام. علم المثلثات هو أحد فروع علم الهندسة العامة. يعتبر قدماء المصريين أول من عمل بقواعد حساب المثلثات، إذ استخدموها في بناء الأهرامات وبناء معابدهم. لكن قليل من الموروث عنهم في هيئة مخطوطات ، ومنها أن عرّّفوا مساحة الدائرة بكونها مساوية ل 9و0 لمساحة المربع المحيط بها المماس لها من أربع أضلاع. وترجع معرفتنا بحساب المثلثات إلى الإغريق الذين وضعوا قوانينها.
لعلم المثلثات تطبيقات كثيرة، منها حساب المسافات والزوايا في إنشاء المباني والطرق وفي صناعة الموتورات وأجهزة التلفزيون والأثاث وملاعب الكرة، وكذلك وفي حساب المسافات الجغرافية والفلك، وفي أنظمة الاستكشاف بالأقمار الصناعية.
يكون مثلثان متشابهان إذا كانت الزوايا المتقابلة من كل منهما متساوية، أي عندما ينتج أحدهما عن الآخر بتكبيرة أو تصغيره. وتكون أطوال أضلاع المثلثين المتشابهين متناسبة. أي انه إذا كان طول أقصر اضلاع المثلث الأول ضعف طول أقصر اضلاع المثلث الثاني، فان طول كل من الضلعين الأطول والمتوسط من المثلث الأول يكون ضعف طولي الضلعين الأطول والمتوسط من المثلث الثاني أيضا، وبالتالي فان النسبة بين طولي الضلعين الأقصر والأطول في المثلث الأول مساوية للنسبة بين طولي الضلعين الأقصر والأطول في المثلث الثاني.
اعتمادا على هذه القوانين، من الممكن تعريف التوابع المثلثية، مستخدمين المثلث القائم. وهناك القانون القائل انه إذا تساوت زاويتان في مثلثين قائمين، فان هذين المثلثين متشابهان، وتكون النسبة بين الضلع المقابلة للزاويتين المتساويتين، وتر كل من المثلثين (الضلع المقابلة للزاوية القائمة) متساوية بالنسبة لكل من المثلثين وتعتمد فقط على قيمة الزاوية، وستكون عددا بين 0 و 1، تدعى هذه النسبة بجيب الزاوية. بشكل مماثل، يمكن تعريف تجيب الزاوية على أنها النسبة بين الضلع المجاور لها والوتر.
جيب زاوية = المحور الصادي
تجيب تمام زاوية = المحور السيني
تابعا الجيب والجيب هما أهم التوابع المثلثية، هناك أيضا توابع أخرى تعرف باخذ نسب أخرى من اضلاع المثلث القائم، أو نسب من التابعين الأساسيين جيب وتجيب، هذه التوابع هي: طل، تطل، قا، وتقا.
ظل الزاوية = جيب الزاوية/ جيب تمام الزاوية ظل تمام الزاوية = جيب تمام الزاوية / جيب الزاوية قا (قاطع) = 1 / جتا يه قاطع تمام (قتا) = 1 / جيب بهذا نكون قد عرفنا التوابع المثلثية للزوايا من 0 إلى 90، من الممكن توسيع تعريفنا ليشمل كل القيم الحقيقية للزوايا باستخدام الدائرة الواحدية.
عند إمكانية حساب التوابع المثلثية (من جداول أو الآلة الحاسبة) ومعرفة قيم ضلع وزاويتين أو ضلعين وزاوية أو ثلاثة اضلاع من المثلث، يمكن إيجاد قيم باقي عناصر المثلث (زوايا واضلاع) باستخدام قوانين الجيب وقوانين جيب تمام.
  • هذا بخصوص حساب المثلثات المستوية. وهناك فرع لا يقل أهمية عنه وهو حساب المثلثات علي السطح الكروي، وهذا الفرع مهم بصفة خاصة في الفلك وفي الملاحة.
هذا بخصوص

تحليل التوافقية

تحليل التوافقية هي فرع من فروع الرياضيات الذي يدرس التمثيل في الأقترانات أو إشارات مثل تداخل الموجات الأساسية.انها تحقق وتعمم مفاهيم متسلسلة فوريير وتحويل فوريير. موجات الأساسية يطلق عليهم اسم "التوافقية" (في الفيزياء) ، ومن هنا اسم "التحليل التوافقي" ، ولكن اسم "التوافقية" في هذا السياق هو معمم خارج عن المعنى الأصلي لمضاعفات صحيحة لتردد ما. في القرنين الماضيين ، فقد أصبح موضوع واسع مع التطبيقات في مجالات متنوعة مثل معالجة الإشارات ، ميكانيكا الكم ، وعلم الأعصاب. تحويل فوريير الكلاسيكي على ن ص لا يزال مجال بحث جاري، وخصوصا فيما يتعلق بتحويل فوريير لأشياء أكثر عمومية مثل توزيعات المزاج(tempered distributions).على سبيل المثال ، إذا كان لنا أن نفرض بعض المتطلبات على توزيع "و" ، يمكننا محاولة ترجمة هذه الاحتياجات ، من خلال تحويل فوريير على التوزيع "و". مبرهنة بيلي - فينر هو مثال على هذا.